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Abstract. The partition function of a dimer with one electron, interacting with two local
Einstein phonons, is reduced to the pure phonon partition function. It is investigated analytically
in the coherent-state path-integral representation in order to recognize the competition between
electron hopping and electron—phonon interaction. The non-polynomial term in the phonon
action, promoted by electron hopping, is deduced. The low-temperature resonance decoupling
between electron and phonon systems destroys the low-temperature tendency of electron
localization in the case of small hopping and large electron—phonon coupling. The comparison
with polaronic theory is completed.

1. Introduction

The polaron—a bound state of a conducting electron and phonon—is a fundamental concept
in electron—phonon interaction theory when the consganf electron—phonon interaction

is large enough [1]. It is known that the phonon and polaron degrees of freedom can
be decoupled in zero order of/d perturbation theory [2]. The formation of the polaron
changes the thermodynamics and the conducting properties of a crystal as well as the lattice
distortion.

In molecular crystal in the general case a conducting electron interacts with inter- and
intra-site phonons [3]. In the last few years interest has been shown in Holstein-type models
of molecular crystals and clusters in terms of a general interest in systems with a small
number of particles. Numerical calculations are performed for ground state properties in
these cases [4-6]. The simplest version of such a system is the Holstein dimer with a single
electron, interacting with the site Einstein phonons, while the inter-molecular oscillations
are neglected.

This two-site model with one electron has been the topic of a lot of research [7] which
has used the polaron representation for an electron and phonons of the dimer. This model is
also the subject of the present work. In contrast to the quoted papers, we use an analytical
description and evaluate the partition function of a dimer in the thermal equilibrium state.
Via the averaging over the electron variable we find a non-polynomial effective phonon
Hamiltonian that leads to a path-integral representation for the partition function. This
treatment is similar to the adiabatic approach for electrons and nuclei in molecules. We
consider the competition between the electron hoppiagd electron—phonon interactign
since the phonon action depends on the parametéter extracting the electron variables.

Our idea is to return to the initial quantum-statistical images with the purpose of creating
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an additional picture for the conditions of polaron existence. In particular, we obtain the
resonance values of phonon parameters, where the electron and phonon variables can be
decoupled. Also, we demonstrate the tendency for high-temperature localization of the
electron. We do not use the polaronic picture, but we can compare the result of nonlinear
phonon dynamics with some conclusions from the ordinary polaronic treatment.

2. Phonon system for symmetric and antisymmetric electron states

Let us start with the Hamiltonian
H = —t(cfca+cjcr) + Qajar + ajy ax) + glay + an)ni + glag + ax)np — pn(ny + ny)

1)
wherec;” (¢;) is the creation (annihilation) operator of an electron atisitel, 2 (we drop
the spin subscriptys; = ¢ ¢;, a (a;) is the creation (annihilation) operator of a phonon

of frequency< at sitei, ¢ is the electron-hopping constant ands the one-particle level.
We search for a wavefunction of the Hamiltonian (1) in the following form:

U = cf filal, aD|0)0PN + cf falal, aF)|0)|0)P )
where
0 = 05105 10" = 0)"10)3"

After the substitution of (2) into the Sdbdinger equationH¥ = EWV we equate the
phonons’ operator coefficients at the electron basis functh}“r)@)e' and c§’|0)e'. With
the use of the reIationa,-cﬁO)e' = (Si,-c].*|0)e' we derive two equations, which may be
represented in a matrix form:

( MW-E—n —t ) fila$, a)OPM 0
—t Q—E—p fa(af . a3)|0)P" (3)
Q,- = Q(afal —i—a;ag) + g(ai+ + a;).

Our next step is the diagonalization of the operator matrix (3). Let us consider the
transformationyJ,

oo L (1 P u1—1<1 1>
V2\1 —-pp V2\ P2 —P2

where Py, permutates the symboqu anda2 Really, the operatorﬁzl(g) and P;, do not

commute; they obey the equauoﬂ’sle(z) = 92(1)P12, 2 = 1. Using these relations,
one can easily check that

U h—E—u —t -t H--E 0
—t QL—E—p - 0 H.—E
H_=Q(afa1+afay) + glaf +ar) —tP— p

H, = Q(afar+afay) + glag +ag) +1Pra—

In essence, the transformatithis a kind of Fulton—Gouterman transformation [8]. Now
the Schodinger equation (3) looks like

H—-E 0 fiaf, a3)|0)P"
u =0 4
( 0 H.-E ) ( foaf, a0 @
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where the column of the phonons’ vectors is transformed in the following way:

U fias . az)|0)P" Fs(a; . a3)|0)P"

foaf a0 |\ Faaf, a;)(0)""
_ 1 [ Al a0+ Piz fa(af, aF)|0)P"
V2 \ filai, aD)IOP" = Pi; fo(ay , af)|OP"
1 [ A, a0+ folaz, af)|0)P"

V2 \ flaf,a) |0 — fo(az, af)|0)P"
Now one can see that the wavefunction (2) may be written in a form
W = [3(cf +¢f Pro) Fs(ay , a3) + 3(cf — ¢f P1o) Fa(ay', a3)]10)P"0)®

which represents the symmetric and antisymmetric electron states, taking account of the
phonon permutation symmetry. This means that the spectrum of the initial system (1)
coincides with the superposition of the spectra of the &tinger equations for the phonon

wavefunctionsFs and F, with eigenvaluesE,, which originate from the symmetric and
antisymmetric electron states

H_ Fs=FE_F; H Fy=E F,.

Therefore, the partition function of the system (1) may be calculated as
Z=Speft =7, +27_ =spefir L spehh- 5)
Z(t)=Z_(-1)

where Sp means the trace over phonon and electron variables, while sp means the trace

over phonon variables only. The operafp acting on the boson basic vectors is deduced
in the appendix in terms of operatats, az, af , aj

P = COS[%T[(—aI’al — a;az + afaz + a;al)]. (6)

3. Path integral for phonon partition function

In order to evaluate the partition functicfi. for HamiltoniansH with the operator form
(6) we takeZ-. as the path integrals in the Bose-coherent representation

Ze= / Daj Dai Da; Da, exp(S<). )

The part of the actior$;. corresponding to the operat®y, can be calculated directly from
the limiting procedure for the path integral. The decomposition of unity has the following

form:
i=/ [T dwi Qzidi itz
i=1,2
where|z) are the usual Klauder coherent states. Then, forXhe oo time-sliced matrix
elements approximation [9] we have

, piP : , ptP
2{zi1l1(zival €XP N [zidalzid2 ~ 2zi 1 l1{zival1 + T|Zi>l|zi>2

t 2(Z§+1|Zi>21<Zi+1|Zf)1>

/ !
= 2(z; 1|Z-)21(Zi+1|Zi>1(1+
L N 2(z},412})21(zit1lzi)1

Bt _ _ _ _
= 2<Z;+1|Z§>21(Zi+1|zi>l(l + N eXP(ZiZj 1 + 2iZi+1 — ZiZi4l — ZiZi+1) |-
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So, the actions foZ.. are as follows:

B
Se=— f [d1dy + dodp + Q(ara1 + azaz) + g(ai + ar)
0
Ft exp(—aiay — azaz + aiaz + azay)] dr.

It is convenient to change the variables

u—+v vV—Uu
ar =
V2 T2

and to get the action in the form:

8)

ay =

B
Sy = —f [ﬁu+av+sz(ﬁu+av)+ L o+v—i —u):FteXp(—ZIZu)] dr.
0 V2

The factorization ofZ . takes place in the variablesandv and we can writeS = S, + S,
and correspondinglyZ: = Z,Z+,. The integral ovew-variables is Gaussian and can be
calculated explicitly, so that

2
_ VWt [pa
Z = exp(ﬂ(qu 29>> 1= exp(—pQ) / Du Du expS+. .,

where
£ g
Sy, = _f [uu + Qiu— (i +u) £ teXp(—ZIZu):| dr. 9)
* 0 V2

It is impossible to calculate the integral overin (7) explicitly, and we try to choose
an approximation scheme taking into account the exact solutions for particular cases. For
t =0,

. eXp(Bg?/ Q)
(1 — exp(—BR))?
The partition functionZ in the limiting caseg = 0 can be easily calculated since we have

a non-interacting electron and phonons. Evaluation of each.gf,—o separately is a less
trivial problem. For instance,

Zq:|z:0 = Z|t:0 = 2Z:|:|z:0- (10)

Z ulg—o0 = sp( exp(—BQuTu) Y (’?%[cos(num)]”)

=sp)_ exp(—,mwu)% L S~ orn-nncy
n . —0

b
B Z (Br)" 2": 27"zZ,Cr . coshgt 4 sinhpt
Sl 1 (- et 1—exp(—BR)  1+exp—BRQ)
Similarly,
coshgr sinhBt
Z+,u|g:0 =

1—exp—BQ) 1+ exp—BQ)
and therefore

2e8 coshpt
(1 - exp(—p2)?

Z|g=0 = Z*|g=0 + Z+|g=0 = (11)
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4. Low-temperature electron—phonon resonance for small hopping

We can construct the iterative procedure based upon the stationary phase approximation for
the case when the electron-hopping integral is smatk 2, g. It should be stressed that

in our case the stationary phase approximation is valid only for |ar(gmall temperature).

It leads to equations on trajectorigsu with periodic boundary conditions(0) = u(8):

u+ Qu — A t(—2u) exp[—2uu] =0
V2
. ¢ (12)
—u+ Qu — ﬁ + t(—2it) exp[—2iu] = 0.

For small¢ the system of equations (12) has a solution which does not depend on the
variablet. The first approximation of this solution can be obtained via the general scheme
[9] for the stationary phase approximation in the form

_ g _ 1
=uy= —— Dit Du exp Sy, >~ ———— exp(S. ,

o =uo =70 / uDu exp s, Dets?S, P{S+,ulo}
where the kernel of the second variation of the action, for instafice,is as follows:
825_ ., d , _ -

——| = —4+R)8(t — 1) + 2t (2uu — 1) exp(—2uu).
Sudu |, dr

Then the partition function takes the form

e exp(g®B/ Q) { exp[Br exp(—g?/ 2]

2= T exp—p0) | 1— exp—plo — 21 exp(—2/ @2 + 2127/ 0) exp—g2/ D))

. expl-pt exp—g?/ 7)) a3
1— exp(—p[2 + 21 exp—g?/ 2) — 21(g%/ ) exp(—g?/ D)) } '

We can see that fo2 = g > ¢ the partition function (13) looks like

2 coslt{Bt/e)
_ B+
Z = /@t A—e oy

This formula represents the partition function of the system (1) without the electron—phonon
interaction with the renormalization of parameters

t

w— pu+ 2 t— -

e
of the initial electron energy and hopping. It means that the bound (‘polaron’-type) electron—
phonon state becomes unstable even for small hopping in the case of electron—phonon
resonance.

As to the high-temperature asymptote {6y, we can obtain it via replacing the path

integral with action (9) by a-integral:

_ _ g _
Ziy~ | diuduexp| —8| Qiu — == +u) L trex —2uu)>i|.
o | p[ ﬁ( oL p(
This integral can be represented asseries decomposition. It may be shown that the point
g = Q is not the point of resonance in this case, so at high temperature the electron—phonon
decoupling for small hopping disappears.
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5. Hopping renormalization for small electron—phonon interaction

In the case of smal} « ¢, 2 we can estimate the partition functigfy. , in the following
manner. The shift of the variables

8 — -
W=uU— —— w=u-—

8
V2Q V2Q
leads to the action

B 5 ) 5
Si,uz—/o (ww+s2u‘)w:|:texp<—2a;w_%(u—ﬂrw)_%)_%)dt

~ ’Z%Z_/Oﬂ(ww + Quw + re &/ <1 - %(w +w) + é—z(w + w)z)e%w>dr.
(14)
Now we use the iterative procedure and replace
(0 + w) = ((0 + w)) (W + w)? = (0 + w)?)
where averages are taken from the- 0 system. So,

(W) = (w) = (W?) = (w?) =0

N S z ___pa| coshBt sinhgt
(ww) - <ww> =n= _ES_Q :I:,u|g=0 =€ (1_ e_ﬁg)z (1+ e_ﬂQ)z .
Effectively we have the replacement
2 .
g _ coshgt sinhBt
—>5(1-2e7¢ + 15
l‘i—)l‘eXpl: 92( e {(1—e—ﬁ9)2 (1+e—59)2}>} (15)

and the partition function in this case looks like the one in (11) gor= 0 with
renormalization of the hopping constant (15).

So, in the case of small electron—phonon interactiome obtained the renormalization
of the effective electron hopping (15). This renormalization is different for the symmetric
and antisymmetric electron states.

6. Conclusion

We deduce the representation of the initial electron—phonon model (1) via two nonlinear
phonon Hamiltoniang/_ and H, , corresponding to the symmetric and antisymmetric states
of an electron. It means that we have calculated the partition function of the Holstein dimer
with one electron over the electron variable. The derived phonon action contains a non-
polynomial term, promoted by the electron hoppingThis calculation is, in some part,
close to one performed in [10] for a Holstein dimer with two electrons; these authors
used quantum-mechanical numerical calculations and investigated the ground state energy
of the dimer, but not the partition function. In our paper the partition function over the
phonon variables is represented via the coherent-state path integral. In spite of the complex
form of the expressions obtained for the partition functions, remarkable consequences for
special values of parameters of the system (1) may be seen. We analysed the special
cases (sections 4 and 5) and obtained the effective description of the system in terms of
non-interacting electron and phonons.

In the case of small-temperature, small-electron hoppirg 2, g, electron—phonon
decoupling takes place as a consequence of the electron—phonon resonance candigon
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The shift of the parameter and renormalization of the parameteare similar to those
obtained in polaron perturbation theory [2]. The resonance condition close to our condition
Q = g was obtained numerically in [11] for the response function of a two-level system,
interacting with phonons.

In the case of a small electron—phonon interacgo® ¢, 2, when the polaron does not
exist, we obtain renormalizations of the hopping constavttich are different for symmetric
and antisymmetric electron states. We treat the case of a small difference befveest_
as testimony to the tendency for electron localization, as far as it denotes a large difference
between the coefficients of the initial electron state.

We would like to touch on the problem of the transition to the trapping state which
takes place in this type of two-level system. In our path-integral treatment the transition
can be obtain as a branch point of the solution of the stationary phase approximation. One
can easily see that the system (12) for srgatlas a single solution, and the second solution
appears, ag increases. The same transition was investigated numerically for clusters [4, 7].
The localized states of the same type were shown numerically to appear instead of a band
picture in the case 0§? > Qr in [12, 13]. This structure of the density of states was
called in [12] ‘resonances’ in contrast to our term ‘resonance’ for$he- g case. Our
low-temperature resonan€e= g gives the condition when the tendency of a large polaron
to transform to a small polaron for large> ¢ is disturbed.

So, in our approach we eliminate the electron variable from the partition function of
the Holstein dimer and derive the non-polynomial effective action for phonons. Such an
approach happened to be suitable for an approximate analytical calculation that leads to a
useful classification of electron—phonon statistical states.
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Appendix
Let us obtain the explicit form of the permutation operaté@. Based upon the
corresponding term in the action, we try to construct a permutation operator of the form

Pyy = explag ™y + Byt o) exply ' o + sy ).
The equalities

explag ™y + BY P expl—agp Y — BYT¢) = ¢ coshyap + 1//+\/§Sinh\/@

explag Yy + Byt eyt exp(—agpty — Byte) = vt coshy/ap + ¢+\/§ sinhy/af
and
explydt o + 8y Y)gT exp(—yoTo — Syty) = exply)pt
explyd o + sy Y)Yt exp—yoTto — sy Ty) = expd)yt

show, that we should choosgaf = in/2, exg—8) = /B/a sinh/af and exg—y) =
Ja/Bsinhy/aB. Itis enough to choose = 8 =in/2,y = § = —in/2. The other solution
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is as follows: o = 8 = —in/2,y =8 = in/2. So, we can choose the Hermitian form of
the permutation operator:

Pyy =cos[3n(—¢tp — vy + ¢ty +yTe)].
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