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Abstract. The partition function of a dimer with one electron, interacting with two local
Einstein phonons, is reduced to the pure phonon partition function. It is investigated analytically
in the coherent-state path-integral representation in order to recognize the competition between
electron hopping and electron–phonon interaction. The non-polynomial term in the phonon
action, promoted by electron hopping, is deduced. The low-temperature resonance decoupling
between electron and phonon systems destroys the low-temperature tendency of electron
localization in the case of small hopping and large electron–phonon coupling. The comparison
with polaronic theory is completed.

1. Introduction

The polaron—a bound state of a conducting electron and phonon—is a fundamental concept
in electron–phonon interaction theory when the constantg of electron–phonon interaction
is large enough [1]. It is known that the phonon and polaron degrees of freedom can
be decoupled in zero order of 1/g perturbation theory [2]. The formation of the polaron
changes the thermodynamics and the conducting properties of a crystal as well as the lattice
distortion.

In molecular crystal in the general case a conducting electron interacts with inter- and
intra-site phonons [3]. In the last few years interest has been shown in Holstein-type models
of molecular crystals and clusters in terms of a general interest in systems with a small
number of particles. Numerical calculations are performed for ground state properties in
these cases [4–6]. The simplest version of such a system is the Holstein dimer with a single
electron, interacting with the site Einstein phonons, while the inter-molecular oscillations
are neglected.

This two-site model with one electron has been the topic of a lot of research [7] which
has used the polaron representation for an electron and phonons of the dimer. This model is
also the subject of the present work. In contrast to the quoted papers, we use an analytical
description and evaluate the partition function of a dimer in the thermal equilibrium state.
Via the averaging over the electron variable we find a non-polynomial effective phonon
Hamiltonian that leads to a path-integral representation for the partition function. This
treatment is similar to the adiabatic approach for electrons and nuclei in molecules. We
consider the competition between the electron hoppingt and electron–phonon interactiong,
since the phonon action depends on the parametert after extracting the electron variables.
Our idea is to return to the initial quantum-statistical images with the purpose of creating
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an additional picture for the conditions of polaron existence. In particular, we obtain the
resonance values of phonon parameters, where the electron and phonon variables can be
decoupled. Also, we demonstrate the tendency for high-temperature localization of the
electron. We do not use the polaronic picture, but we can compare the result of nonlinear
phonon dynamics with some conclusions from the ordinary polaronic treatment.

2. Phonon system for symmetric and antisymmetric electron states

Let us start with the Hamiltonian

H = −t (c+1 c2+ c+2 c1)+�(a+1 a1+ a+2 a2)+ g(a+1 + a1)n1+ g(a+2 + a2)n2− µ(n1+ n2)

(1)

wherec+i (ci) is the creation (annihilation) operator of an electron at sitei = 1, 2 (we drop
the spin subscript),ni = c+i ci , a+i (ai) is the creation (annihilation) operator of a phonon
of frequency� at sitei, t is the electron-hopping constant andµ is the one-particle level.

We search for a wavefunction of the Hamiltonian (1) in the following form:

9 = c+1 f1(a
+
1 , a

+
2 )|0〉el|0〉ph + c+2 f2(a

+
1 , a

+
2 )|0〉el|0〉ph (2)

where

|0〉el = |0〉el
1 |0〉el

2 |0〉ph = |0〉ph
1 |0〉ph

2 .

After the substitution of (2) into the Schrödinger equationH9 = E9 we equate the
phonons’ operator coefficients at the electron basis functionsc+1 |0〉el and c+2 |0〉el. With
the use of the relationsnic

+
j |0〉el = δij c

+
j |0〉el we derive two equations, which may be

represented in a matrix form:(
�̂1− E − µ −t
−t �̂2− E − µ

)(
f1(a

+
1 , a

+
2 )|0〉ph

f2(a
+
1 , a

+
2 )|0〉ph

)
= 0

�̂i = �(a+1 a1+ a+2 a2) + g(a+i + ai).
(3)

Our next step is the diagonalization of the operator matrix (3). Let us consider the
transformationU,

U = 1√
2

(
1 P̂12

1 −P̂12

)
U−1 = 1√

2

(
1 1
P̂12 −P̂12

)
whereP̂12 permutates the symbolsa+1 anda+2 . Really, the operatorŝ�1(2) and P̂12 do not
commute; they obey the equationŝP12�̂1(2) = �̂2(1)P̂12, P̂ 2

12 = 1. Using these relations,
one can easily check that

U
(
�̂1− E − µ −t
−t �̂2− E − µ

)
U−1 =

(
H− − E 0

0 H+ − E
)

H− = �(a+1 a1+ a+2 a2) + g(a+1 + a1)− t P̂12− µ
H+ = �(a+1 a1+ a+2 a2) + g(a+2 + a2)+ t P̂12− µ.

In essence, the transformationU is a kind of Fulton–Gouterman transformation [8]. Now
the Schr̈odinger equation (3) looks like(

H− − E 0
0 H+ − E

)
U

(
f1(a

+
1 , a

+
2 )|0〉ph

f2(a
+
1 , a

+
2 )|0〉ph

)
= 0 (4)
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where the column of the phonons’ vectors is transformed in the following way:

U

(
f1(a

+
1 , a

+
2 )|0〉ph

f2(a
+
1 , a

+
2 )|0〉ph

)
=
(
Fs(a

+
1 , a

+
2 )|0〉ph

Fa(a
+
1 , a

+
2 )|0〉ph

)

= 1√
2

(
f1(a

+
1 , a

+
2 )|0〉ph+ P̂12f2(a

+
1 , a

+
2 )|0〉ph

f1(a
+
1 , a

+
2 )|0〉ph− P̂12f2(a

+
1 , a

+
2 )|0〉ph

)

= 1√
2

(
f1(a

+
1 , a

+
2 )|0〉ph+ f2(a

+
2 , a

+
1 )|0〉ph

f1(a
+
1 , a

+
2 )|0〉ph− f2(a

+
2 , a

+
1 )|0〉ph

)
.

Now one can see that the wavefunction (2) may be written in a form

9 = [ 1
2(c
+
1 + c+2 P̂12) Fs(a

+
1 , a

+
2 )+ 1

2(c
+
1 − c+2 P̂12) Fa(a

+
1 , a

+
2 )
]|0〉ph|0〉el

which represents the symmetric and antisymmetric electron states, taking account of the
phonon permutation symmetry. This means that the spectrum of the initial system (1)
coincides with the superposition of the spectra of the Schrödinger equations for the phonon
wavefunctionsFs and Fa with eigenvaluesE∓, which originate from the symmetric and
antisymmetric electron states

H−Fs = E−Fs H+Fa = E+Fa.

Therefore, the partition function of the system (1) may be calculated as

Z = Sp e−βH = Z+ + Z− = sp e−βH+ + sp e−βH−

Z+(t) = Z−(−t)
(5)

where Sp means the trace over phonon and electron variables, while sp means the trace
over phonon variables only. The operatorP̂12 acting on the boson basic vectors is deduced
in the appendix in terms of operatorsa1, a2, a

+
1 , a

+
2

P12 = cos
[

1
2π(−a+1 a1− a+2 a2+ a+1 a2+ a+2 a1)

]
. (6)

3. Path integral for phonon partition function

In order to evaluate the partition functionZ∓ for HamiltoniansH∓ with the operator form
(6) we takeZ∓ as the path integrals in the Bose-coherent representation

Z∓ =
∫

Da∗1 Da1 Da∗2 Da2 exp(S∓). (7)

The part of the actionS∓ corresponding to the operator̂P12 can be calculated directly from
the limiting procedure for the path integral. The decomposition of unity has the following
form:

Î =
∫ ∏

i=1,2

dµi (|zi〉i i〈zi |)

where|z〉 are the usual Klauder coherent states. Then, for theN ∼ ∞ time-sliced matrix
elements approximation [9] we have

2〈z′i+1|1〈zi+1| exp

[
βtP̂

N

]
|zi〉1|z′i〉2 ∼ 2〈z′i+1|1〈zi+1|1+ βtP̂

N
|zi〉1|z′i〉2

= 2〈z′i+1|z′i〉21〈zi+1|zi〉1
(

1+ t

N

2〈z′i+1|zi〉21〈zi+1|z′i〉1
2〈z′i+1|z′i〉21〈zi+1|zi〉1

)
= 2〈z′i+1|z′i〉21〈zi+1|zi〉1

(
1+ βt

N
exp(zi z̄

′
i+1+ z′i z̄i+1− z′i z̄i+1− zi z̄i+1)

)
.



3188 R Pucci et al

So, the actions forZ∓ are as follows:

S∓ = −
∫ β

0
[ā1ȧ1+ ā2ȧ2+�(ā1a1+ ā2a2)+ g(ā1+ a1)

∓t exp(−ā1a1− ā2a2+ ā1a2+ ā2a1)] dτ.

It is convenient to change the variables

a2 = u+ v√
2

a1 = v − u√
2

(8)

and to get the action in the form:

S∓ = −
∫ β

0

[
ūu̇+ v̄v̇ +�(ūu+ v̄v)+ g√

2
(v̄ + v − ū− u)∓ t exp(−2ūu)

]
dτ.

The factorization ofZ∓ takes place in the variablesu andv and we can writeS∓ = Sv+S∓u
and correspondingly,Z∓ = ZvZ∓,u. The integral overv-variables is Gaussian and can be
calculated explicitly, so that

Z = exp

(
β

(
µ+ g2

2�

))
1

1− exp(−β�)
∫

DūDu expS±,u

where

S±,u = −
∫ β

0

[
ūu̇+�ūu− g√

2
(ū+ u)± t exp(−2ūu)

]
dτ. (9)

It is impossible to calculate the integral overu in (7) explicitly, and we try to choose
an approximation scheme taking into account the exact solutions for particular cases. For
t = 0,

Z∓|t=0 = eβµ
exp(βg2/�)

(1− exp(−β�))2 Z|t=0 = 2Z∓|t=0. (10)

The partition functionZ in the limiting caseg = 0 can be easily calculated since we have
a non-interacting electron and phonons. Evaluation of each ofZ±,u|g=0 separately is a less
trivial problem. For instance,

Z−,u|g=0 = sp

(
exp(−β�u+u)

∑
n

(βt)n

n!

[
cos(πu+u)

]n)
= sp

∑
n

exp(−β�u+u)(βt)
n

n!

1

2n

n∑
m=0

Cmn eiπ(2m−n)u+u

=
∑
n

(βt)n

n!

n∑
m=0

2−nZvCmn
1− (−1)2m−ne−β�

= coshβt

1− exp(−β�) +
sinhβt

1+ exp(−β�) .

Similarly,

Z+,u|g=0 = coshβt

1− exp(−β�) −
sinhβt

1+ exp(−β�)
and therefore

Z|g=0 = Z−|g=0+ Z+|g=0 = 2eβµ coshβt

(1− exp(−β�))2 . (11)
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4. Low-temperature electron–phonon resonance for small hopping

We can construct the iterative procedure based upon the stationary phase approximation for
the case when the electron-hopping integral is small:t � �, g. It should be stressed that
in our case the stationary phase approximation is valid only for largeβ (small temperature).
It leads to equations on trajectoriesū, u with periodic boundary conditionsu(0) = u(β):

u̇+�u− g√
2
± t (−2u) exp[−2ūu] = 0

−˙̄u+�ū− g√
2
± t (−2ū) exp[−2ūu] = 0.

(12)

For small t the system of equations (12) has a solution which does not depend on the
variableτ . The first approximation of this solution can be obtained via the general scheme
[9] for the stationary phase approximation in the form

ū0 = u0 = g√
2�

∫
DūDu exp S±,u ' 1

Detδ2S±,u
exp{S±,u|0}

where the kernel of the second variation of the action, for instance,S−,u is as follows:

δ2S−,u
δū δu

∣∣∣∣
0

=
(

d

dτ
+�

)
δ(τ − τ ′)+ 2t (2ūu− 1) exp(−2ūu).

Then the partition function takes the form

Z ∼= eβµ exp(g2β/�)

1− exp(−β�)
{

exp[βt exp(−g2/�2)]

1− exp(−β[�− 2t exp(−g2/�2)+ 2t(g2/�2) exp(−g2/�2)])

+ exp[−βt exp(−g2/�2)]

1− exp(−β[�+ 2t exp(−g2/�2)− 2t(g2/�2) exp(−g2/�2)])

}
. (13)

We can see that for� = g � t the partition function (13) looks like

Z = eβ(�+µ)
2 cosh(βt/e)

(1− e−β�)2
.

This formula represents the partition function of the system (1) without the electron–phonon
interaction with the renormalization of parameters

µ→ µ+� t → t

e

of the initial electron energy and hopping. It means that the bound (‘polaron’-type) electron–
phonon state becomes unstable even for small hopping in the case of electron–phonon
resonance.

As to the high-temperature asymptote forZu, we can obtain it via replacing the path
integral with action (9) by ac-integral:

Z±,u ∼
∫

dū du exp

[
−β

(
�ūu− g√

2
(ū+ u)± t exp(−2ūu)

)]
.

This integral can be represented as at-series decomposition. It may be shown that the point
g = � is not the point of resonance in this case, so at high temperature the electron–phonon
decoupling for small hopping disappears.
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5. Hopping renormalization for small electron–phonon interaction

In the case of smallg � t, � we can estimate the partition functionZ±,u in the following
manner. The shift of the variables

w = u− g√
2�

w̄ = ū− g√
2�

leads to the action

S±,u = −
∫ β

0

(
w̄ẇ +�w̄w ± t exp

(
−2w̄w −

√
2g

�
(w̄ + w)− g2

�2

)
− g2

2�2

)
dτ

≈ βg2

2�
−
∫ β

0

(
w̄ẇ +�w̄w ± te(−g2/�2)

(
1−
√

2g

�
(w̄ + w)+ g2

�2
(w̄ + w)2

)
e−2w̄w

)
dτ.

(14)

Now we use the iterative procedure and replace

(w̄ + w)→ 〈(w̄ + w)〉 (w̄ + w)2→ 〈(w̄ + w)2〉
where averages are taken from theg = 0 system. So,

〈w̄〉 = 〈w〉 = 〈w̄2〉 = 〈w2〉 = 0

〈w̄w〉 = 〈ww̄〉 = n̄ = − 1

β

∂

∂�
Z±,u|g=0 = e−β�

{
coshβt

(1− e−β�)2
± sinhβt

(1+ e−β�)2

}
.

Effectively we have the replacement

t± → t exp

[
− g

2

�2

(
1− 2e−β�

{
coshβt

(1− e−β�)2
± sinhβt

(1+ e−β�)2

})]
(15)

and the partition function in this case looks like the one in (11) forg = 0 with
renormalization of the hopping constant (15).

So, in the case of small electron–phonon interactiong we obtained the renormalization
of the effective electron hopping (15). This renormalization is different for the symmetric
and antisymmetric electron states.

6. Conclusion

We deduce the representation of the initial electron–phonon model (1) via two nonlinear
phonon HamiltoniansH− andH+, corresponding to the symmetric and antisymmetric states
of an electron. It means that we have calculated the partition function of the Holstein dimer
with one electron over the electron variable. The derived phonon action contains a non-
polynomial term, promoted by the electron hoppingt . This calculation is, in some part,
close to one performed in [10] for a Holstein dimer with two electrons; these authors
used quantum-mechanical numerical calculations and investigated the ground state energy
of the dimer, but not the partition function. In our paper the partition function over the
phonon variables is represented via the coherent-state path integral. In spite of the complex
form of the expressions obtained for the partition functions, remarkable consequences for
special values of parameters of the system (1) may be seen. We analysed the special
cases (sections 4 and 5) and obtained the effective description of the system in terms of
non-interacting electron and phonons.

In the case of small-temperature, small-electron hoppingt � �, g, electron–phonon
decoupling takes place as a consequence of the electron–phonon resonance condition� = g.
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The shift of the parameterµ and renormalization of the parametert are similar to those
obtained in polaron perturbation theory [2]. The resonance condition close to our condition
� = g was obtained numerically in [11] for the response function of a two-level system,
interacting with phonons.

In the case of a small electron–phonon interactiong � t, �, when the polaron does not
exist, we obtain renormalizations of the hopping constantt which are different for symmetric
and antisymmetric electron states. We treat the case of a small difference betweent+ andt−
as testimony to the tendency for electron localization, as far as it denotes a large difference
between the coefficients of the initial electron state.

We would like to touch on the problem of the transition to the trapping state which
takes place in this type of two-level system. In our path-integral treatment the transition
can be obtain as a branch point of the solution of the stationary phase approximation. One
can easily see that the system (12) for smallg has a single solution, and the second solution
appears, asg increases. The same transition was investigated numerically for clusters [4, 7].
The localized states of the same type were shown numerically to appear instead of a band
picture in the case ofg2 � �t in [12, 13]. This structure of the density of states was
called in [12] ‘resonances’ in contrast to our term ‘resonance’ for the� = g case. Our
low-temperature resonance� = g gives the condition when the tendency of a large polaron
to transform to a small polaron for largeg > t is disturbed.

So, in our approach we eliminate the electron variable from the partition function of
the Holstein dimer and derive the non-polynomial effective action for phonons. Such an
approach happened to be suitable for an approximate analytical calculation that leads to a
useful classification of electron–phonon statistical states.
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Appendix

Let us obtain the explicit form of the permutation operatorP̂φψ . Based upon the
corresponding term in the action, we try to construct a permutation operator of the form

P̂φψ = exp(αφ+ψ + βψ+φ) exp(γ φ+φ + δψ+ψ).
The equalities

exp(αφ+ψ + βψ+φ)φ+ exp(−αφ+ψ − βψ+φ) = φ+ cosh
√
αβ + ψ+

√
β

α
sinh

√
αβ

exp(αφ+ψ + βψ+φ)ψ+ exp(−αφ+ψ − βψ+φ) = ψ+ cosh
√
αβ + φ+

√
β

α
sinh

√
αβ

and

exp(γ φ+φ + δψ+ψ)φ+ exp(−γφ+φ − δψ+ψ) = exp(γ )φ+

exp(γ φ+φ + δψ+ψ)ψ+ exp(−γφ+φ − δψ+ψ) = exp(δ)ψ+

show, that we should choose
√
αβ = iπ/2, exp(−δ) = √β/α sinh

√
αβ and exp(−γ ) =√

α/β sinh
√
αβ. It is enough to chooseα = β = iπ/2, γ = δ = −iπ/2. The other solution
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is as follows:α = β = −iπ/2, γ = δ = iπ/2. So, we can choose the Hermitian form of
the permutation operator:

P̂φψ = cos
[

1
2π(−φ+φ − ψ+ψ + φ+ψ + ψ+φ)

]
.
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